171 research outputs found

    Correlated triple collocation to estimate SMOS, SMAP and ERA5-Land soil moisture errors

    Get PDF
    The novel Correlated Triple Collocation (CTC) analysis allows to assess three different data sources of similar spatial resolutions, but with two of them being correlated. In this study, the CTC was applied to estimate the unbiased random errors of the global soil moisture (SM) data provided by two L-band satellite missions -the Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP)- and one numerical model -the ERA5-Land. The three existing SMOS SM products distributed by different research institutions were also analyzed. Preliminary results revealed that errors of SMOS and SMAP SM are correlated, with correlations of ~0.5-0.6. Thus, only ERA5-Land can be considered as independent. The lowest error was obtained for SMAP (0.025 m3m-3), followed by ERA5-Land (0.036 m3m-3). Among the SMOS SM, SMOS-IC had the lowest error (0.046 m3m-3), SMOS-BEC showed an intermediate value (0.048 m3m-3), and SMOS-CATDS had the highest error (0.055 m3m-3). © 2021 IEEE.This work has been supported by the Spanish Ministry of Science and Innovation through the projects ESP2017-89463-C3-1R and ESP2017-89463-C3-2R, the ICM-CSIC Severo Ochoa Excellence Award CEX2019-000928-S, the CommSensLab-UPC María de Maeztu Excellence Award MDM-2016-0600, and the CSIC Interdisciplinary Thematic Platform TELEDETECT.Peer ReviewedPostprint (author's final draft

    Variability of North Atlantic hurricanes : seasonal versus individual-event features

    Get PDF
    Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990's. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    Camps, Adriano ... et al.-- Special volume: Planet Ocean. Scientia Marina 80(Suppl.1) 2016.-- 14 pages, 20 figures[EN] This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre[ES] Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert CentreThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05 and ESP2007-65667-C04, AYA2008-05906-C02-01/ESP, AYA2010-22062-C05 and ESP2015-70014-C2-1-R, and EURYI 2004 awardPeer Reviewe

    2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font

    Get PDF
    Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission capable of measuring sea surface salinity and soil moisture from space. Its novel instrument (the L-band radiometer MIRAS) has required the development of new algorithms to process SMOS data, a challenging task due to many processing issues and the difficulties inherent in a new technology. In the wake of SMOS, a new community of users has grown, requesting new products and applications, and extending the interest in this novel brand of satellite services. This paper reviews the role played by the Barcelona Expert Centre under the direction of Jordi Font, SMOS co-principal investigator. The main scientific activities and achievements and the future directions are discussed, highlighting the importance of the oceanographic applications of the mission.Peer ReviewedPostprint (published version

    Correlation between Arctic river discharge and sea ice formation in Laptev Sea using sea surface salinity from SMOS satellite

    Get PDF
    European Geosciences Union (EGU) General Assembly 2020, 4-8 May 2020During the last 3 decades, the Arctic rivers have increased their discharge around 10%, mainly due to the increase of the global atmospheric temperature. The increase of the river discharge carries higher loads of dissolved organic matter (DOM) and suspended matter (SM) entering to the Arctic Ocean. This results in increased absorption of solar energy in the mixed layer, which can potentially contribute to the general sea ice retreat. Observation based studies (e.g. Bauch et al., 2013) showed correlation between river water discharge and local sea ice melting on the Laptev sea shelf due to the change on the ocean heat. Previous studies are based with a limited number of observations, both in space and in time. Thanks to the ESA SMOS (Soil Moisture and Ocean Salinity) and NASA SMAP (Soil Moisture Active Passive) missions we have daily the sea surface salinity (SSS) maps from the Arctic, which permit to observe the salinity variations due to the river discharges. The Arctic sea surface salinity products obtained from SMOS measurements have been improved considerable by the Barcelona Expert Center (BEC) team thanks to the project Arctic+Salinity, funded by ESA. The new version of the product (v3) covers the years from 2011 up to 2018, have a spatial resolution of 25km and are daily maps with 9 day averages. The Arctic+ SSS maps provide a better description of the salinity gradients and a better effective spatial resolution than the previous versions of the Arctic product, so the salinity fronts are better resolved. The quality assessment of the Arctic+SSS product is challenging because, in this region, there are scarce number of in-situ measurements. The high effective spatial resolution of the Arctic+ SSS maps will permit to study for the first time scientific physical processes that occurs in the Arctic. We will explore if a correlation between the Lena and Ob rivers discharge with the sea ice melting and freeze up is observed with satellite data, as already stated with in-situ measurements by Bauch et al. 2013. Salinity and sea ice thickness maps from SMOS and sea ice concentration from OSISAF will be used in this study. Bauch, D.,Hölemann, J. , Nikulina, A. , Wegner, C., Janout, M., Timokhov, L. and Kassens, H. (2013): Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic) , Journal of Geophysical Research C: Oceans, 118 (1), pp. 550-561 . doi: 10.1002/jgrc.2007

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert Centre

    First regional SMOS Sea Surface Salinity products over the Baltic Sea: quality assessment and oceanographic added-value

    Get PDF
    European Geosciences Union (EGU) General Assembly, 19-30 Apr 2021.-- 2 pagesThe Baltic Sea is a strongly stratified semi-enclosed sea with a large freshwater supply from rivers, net precipitation and water exchange and high-saline water from the North Sea through the Kattegat Strait. In the Danish Straits the water exchange is hampered by bathymetric constraints , such as narrow and shallow sills, and by hydrodynamic restrictions, such as fronts and mixing. The shallow depth of the Baltic Sea (i.e. 54 m in average) yields to highly variable ocean dynamics controlled mainly by local atmospheric forcing. The water exchange between the Baltic Sea and the North Atlantic Ocean is restricted by the narrows and sills of the Danish Straits (i.e. via Kattergat Strait at the East of the Baltic Sea) and by different river outflows distributed across the Baltic Sea. The bottom water in the deep sub-basins is ventilated mainly by large perturbations, so-called major Baltic saltwater inflows. The occurrence of these events needs still further investigation. The description of the complex oceanographic conditions within the Baltic Sea in current model simulations could also be developed. Furthermore, model simulations of the Baltic Sea are constrained to the initialization of the model (i.e. parametrization of the initial surface atmospheric and ocean conditions). For this, the Earth Observation salinity measurements have a great potential to help in the understanding of the dynamics in the basin and to improve the regional models there. However, the Baltic Sea is one of the most challenging regions for the sea surface salinity (SSS) retrieval from satellite measurements. The available EO-based SSS products are quite limited over this region both in terms of spatio-temporal coverage and quality. This is mainly due to several technical limitations that strongly affect the satellite brightness temperatures (TB) measurements, particularly over semi-enclosed seas, such as the high contamination by Radio-Frequency Interferences (RFI) and the contamination close to land and ice edges. Besides, the sensitivity of TB to SSS changes is very low in cold waters and much larger errors are expected compared to temperate oceans. As a main result of the ESA Baltic+ Salinity Dynamics project (), a new regional SSS product derived from the measurements provided by the European Soil Moisture and Ocean Salinity (SMOS) mission has been developed. In this work, first, we describe briefly the enhanced algorithms used in the generation of SMOS SSS fields. Second, we show a complete quality assessment by comparing the satellite and the in situ salinity measurements. For this, we use in situ measurements provided by SeaDataNet and Helcom and Ferry box lines. Finally, we compare the satellite salinity measurements with the salinity fields provided by a model. We focus our analysis in two aspects: i) the description of the freswater fluxes coming from continental discharge and sea-ice melting; and ii) the capability of describing the dynamics of the saltier Atlantic water that enters into the basin through the Kattegat straitPeer reviewe

    Improved BEC SMOS Arctic Sea Surface Salinity product v3.1

    Get PDF
    17 pages, 13 figures, 1 table.-- Data availability: The product (Martínez et al., 2019) is freely distributed on the BEC (Barcelona Expert Center) web page (http://bec.icm.csic.es/, last access: 25 January 2022) with the DOI number https://doi.org/10.20350/digitalCSIC/12620 (Martínez et al., 2019) and on the Digital CSIC server: https://digital.csic.es/handle/10261/219679 (last access: 25 January 2022). Data can be downloaded from the FTP service: http://bec.icm.csic.es/bec-ftp-service/ (last access: 25 January 2022). The maps are distributed in the standard grid EASE-Grid 2.0, which has a spatial resolution of 25 km. In addition to the product validated in this work (L3 with temporal resolution of 9 d), L3 products having a temporal resolution of 3 and 18 d and the L2 product are available. These Arctic SSS products cover the period from 2011 to 2019.-- This work represents a contribution to the CSIC Thematic Interdisciplinary Platform PTI Teledetect and PolarCSIC. Argo data were collected and made freely available by the International Argo program and the national programs that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org, last access: 25 January 2022). The Argo program is part of the Global Ocean Observing SystemMeasuring salinity from space is challenging since the sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) is low (about 0.5 K psu−1), while the SSS range in the open ocean is narrow (about 5 psu, if river discharge areas are not considered). This translates into a high accuracy requirement of the radiometer (about 2–3 K). Moreover, the sensitivity of the TB to SSS at cold waters is even lower (0.3 K psu−1), making the retrieval of the SSS in the cold waters even more challenging. Due to this limitation, the ESA launched a specific initiative in 2019, the Arctic+Salinity project (AO/1-9158/18/I-BG), to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product (Martínez et al., 2019) . The product consists of 9 d averaged maps in an EASE 2.0 grid of 25 km. The product is freely distributed from the Barcelona Expert Center (BEC, http://bec.icm.csic.es/, last access: 25 January 2022) with the DOI number https://doi.org/10.20350/digitalCSIC/12620 (Martínez et al., 2019). The major change in this new product is its improvement of the effective spatial resolution that permits better monitoring of the mesoscale structures (larger than 50 km), which benefits the river discharge monitoringThis work has been carried out as part of the ESA Arctic+Salinity project (AO/1-9158/18/I-BG), which permitted the production of the database, and the Ministry of Economy and Competitiveness, Spain, through the National R&D Plan under L-BAND project ESP2017-89463-C3-1-R. [...] With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI)Peer reviewe
    corecore